Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Future Med Chem ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661115

ABSTRACT

Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.

2.
Am J Transl Res ; 16(3): 940-954, 2024.
Article in English | MEDLINE | ID: mdl-38586090

ABSTRACT

OBJECTIVES: To elucidate the expression levels and prognostic value of the Lipoyltransferase 2 (LIPT2) gene in a pan-cancer view. METHODOLOGY: Our study comprehensively investigated the role of LIPT2 in pan-cancer, combining bioinformatics analyses with experimental validations. RESULTS: Analysis of LIPT2 mRNA expression across various cancers revealed a significant up-regulation in 18 tumor types and down-regulation in 8 types, indicating its diverse involvement. Prognostic assessment demonstrated a correlation between elevated LIPT2 expression and poorer outcomes in Overall Survival (OS) and Disease-Free Survival (DFS), particularly in Glioblastoma Multiforme (GBM), Liver Hepatocellular Carcinoma (LIHC), and Pheochromocytoma and Paraganglioma (PCPG). Protein expression analysis in GBM, LIHC, and PCPG affirmed a consistent increase in LIPT2 levels compared to normal tissues. Examining the methylation status in GBM, LIHC, and PCPG, we found reduced promoter methylation levels in tumor samples, suggesting a potential influence on LIPT2 function. Genetic mutation analysis using cBioPortal indicated a low mutation frequency (< 2%) in LIPT2 across GBM, LIHC, and PCPG. Immune correlation analysis unveiled a positive association between LIPT2 expression and infiltration levels of immune cells in GBM, LIHC, and PCPG. Single-cell analysis illustrated LIPT2's positive correlation with functional states, including angiogenesis and inflammation. Enrichment analysis identified LIPT2-associated processes and pathways, providing insights into its potential molecular mechanisms. Drug sensitivity analysis demonstrated that elevated LIPT2 expression conferred resistance to multiple compounds, while lower expression increased sensitivity. Finally, RT-qPCR validation in HCC cell lines confirmed the heightened expression of LIPT2 compared to a control cell line, reinforcing the bioinformatics findings. CONCLUSION: Overall, our study highlights LIPT2 as a versatile player in cancer, influencing diverse aspects from molecular processes to clinical outcomes across different cancer types.

3.
Am J Transl Res ; 16(3): 873-888, 2024.
Article in English | MEDLINE | ID: mdl-38586106

ABSTRACT

OBJECTIVES: In this comprehensive study spanning 33 malignancies, we explored the differential expression and prognostic significance of Heparan sulfate 6-O-sulfotransferase 2 (HS6ST2). METHODS: TIMER2, UALCAN, and GEPIA2 were used for the expression analysis. cBioPortal was used for mutational analysis. CancerSEA, STRING, and DAVID, were employed for the single cell sequencing data analysis, protein-protein interaction network development, and gene enrichment analyses, respectively. GSCAlite and RT-qPCR were used for drug sensitivity and expression validation analysis. RESULTS: HS6ST2 exhibited significant (P < 0.05) overexpression in multiple cancers. Prognostically, elevated HS6ST2 expression was significantly associated with poor overall survival (OS) in patients with cervical squamous cell carcinoma (CESC), kidney chromophobe (KICH), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD), emphasizing its potential as a prognostic indicator in these cancers. Moreover, HS6ST2 expression correlated with pathological stages in CESC, KICH, LUAD, and STAD patients. Exploration of genetic alterations using cBioPortal unveiled distinct mutational landscapes, with low mutation frequencies in CESC, KICH, LUAD, and STAD. Additionally, reduced DNA methylation in CESC, KICH, LUAD, and STAD suggested a potential link between hypomethylation and heightened HS6ST2 expression. Analysis of immune cell infiltration revealed a positive correlation between HS6ST2 expression and the infiltration of CD8+ T and CD4+ T cells in CESC, KICH, LUAD, and STAD, highlighting its involvement in the tumor immunology processes. Single-cell functional states analysis demonstrated associations between HS6ST2 and diverse cellular processes. Moreover, gene enrichment analysis revealed the involvement HS6ST2 in crucial cellular activities. GSCAlite analysis underscored the potential of HS6ST2 as a therapeutic target, showing associations with drug sensitivity. Finally, experimental validation through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in LUAD tissues confirmed elevated HS6ST2 expression. CONCLUSION: Overall, this study provides a comprehensive understanding of HS6ST2 in CESC, KICH, LUAD, and STAD, emphasizing its potential as a prognostic biomarker and therapeutic target.

4.
Am J Transl Res ; 16(3): 738-754, 2024.
Article in English | MEDLINE | ID: mdl-38586115

ABSTRACT

OBJECTIVES: While dysregulation of DSCC1 (DNA Replication And Sister Chromatid Cohesion 1) has been established in breast cancer and colorectal cancer, its associations with other tumors remain unclear. Therefore, this study was launched to explore the role of DSCC1 in pan-cancer. METHODOLOGY: In this study, we investigate the biological functions of DSCC1 across 33 solid tumors, elucidating its role in promoting oncogenesis and progression in various cancers through comprehensive analysis of multi-omics data. RESULTS: We conducted a comprehensive analysis of DSCC1 expression using RNA-seq data from TCGA and GTEx databases across 30 cancer types. Striking variations were observed, with significant overexpression of DSCC1 identified in numerous cancers. Elevated DSCC1 level was strongly associated with poorer prognosis, shorter survival, and advanced tumor stages in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), as indicated by Kaplan-Meier curves and GEPIA2 analysis. Further investigation into the molecular mechanisms revealed reduced DNA methylation in the DSCC1 promoter region in KIRP, LIHC, and LUAD, supporting enhanced RNA transcription. Protein expression analysis via the Human Protein Atlas (HPA) corroborated mRNA expression findings, showcasing elevated DSCC1 protein in KIRP, LIHC, and LUAD tissues. Mutational analysis using cBioPortal revealed alterations in 0.4% of KIRP, 17% of LIHC, and 5% of LUAD samples, predominantly characterized by amplification. Immune cell infiltration analysis demonstrated robust positive correlations between DSCC1 expression and CD8+ T cells, CD4+ T cells, and B cells, influencing the tumor microenvironment. STRING and gene enrichment analyses unveiled DSCC1's involvement in critical pathways, emphasizing its multifaceted impact. Notably, drug sensitivity analysis highlighted a significant correlation between DSCC1 mRNA expression and responses to 78 anticancer treatments, suggesting its potential as a predictive biomarker and therapeutic target for KIRP, LIHC, and LUAD. Finally, immunohistochemistry staining of clinical samples validated computational results, confirming elevated DSCC1 protein expression. CONCLUSION: Overall, this study provides comprehensive insights into the pivotal role of DSCC1 in KIRP, LIHC, and LUAD initiation, progression, and therapeutic responsiveness, laying the foundation for further investigations and personalized treatment strategies.

5.
Front Immunol ; 15: 1347420, 2024.
Article in English | MEDLINE | ID: mdl-38686374

ABSTRACT

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing. Methods: This research introduces a methodology for the fabrication of a membrane composed of a Polyvinyl alcohol - Sodium Alginate (PVA/A) blend, along with the inclusion of an anti-inflammatory agent, Hesperidin (H), which exhibits promising wound healing capabilities. A uniform layer of a homogeneous solution comprising PVA/A was cast. The process of crosslinking and the enhancement of hydrogel characteristics were achieved through the application of gamma irradiation at a dosage of 30 kGy. The membrane was immersed in a Hesperidin (H) solution, facilitating the permeation and absorption of the drug. The resultant system is designed to deliver H in a controlled and sustained manner, which is crucial for promoting efficient wound healing. The obtained PVA/AH hydrogel was evaluated for cytotoxicity, antioxidant and free radical scavenging activities, anti-inflammatory and membrane stability effect. In addition, its action on oxidative stress, and inflammatory markers was evaluated on BJ-1 human normal skin cell line. Results and Discussion: We determined the effect of radical scavenging activity PVA/A (49 %) and PVA/AH (87%), the inhibition of Human red blood cell membrane hemolysis by PVA/AH (81.97 and 84.34 %), hypotonicity (83.68 and 76.48 %) and protein denaturation (83.17 and 85.8 %) as compared to 250 µg/ml diclofenac (Dic.) and aspirin (Asp.), respectively. Furthermore, gene expression analysis revealed an increased expression of genes associated with anti-oxidant and anti-inflammatory properties and downregulated TNFα, NFκB, iNOS, and COX2 by 67, 52, 58 and 60%, respectively, by PVA/AH hydrogel compared to LPS-stimulated BJ-1 cells. The advantages associated with Hesperidin can be ascribed to its antioxidant and anti-inflammatory attributes. The incorporation of Hesperidin into hydrogels offers promise for the development of a novel, secure, and efficient strategy for wound healing. This innovative approach holds potential as a solution for wound healing, capitalizing on the collaborative qualities of PVA/AH and gamma irradiation, which can be combined to establish a drug delivery platform for Hesperidin.


Subject(s)
Alginates , Hesperidin , Hydrogels , NF-kappa B , Polyvinyl Alcohol , Tumor Necrosis Factor-alpha , Hesperidin/pharmacology , Hesperidin/chemistry , Polyvinyl Alcohol/chemistry , Humans , Alginates/chemistry , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogels/chemistry , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Wound Healing/drug effects , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Inflammation/drug therapy
6.
Am J Transl Res ; 16(2): 432-445, 2024.
Article in English | MEDLINE | ID: mdl-38463578

ABSTRACT

BACKGROUND: Human cell division cycle-associated protein 8 (CDCA8), a critical regulator of mitosis, has been identified as a prospective prognostic biomarker in several cancer types, including breast, colon, and lung cancers. This study analyzed the diagnostic/prognostic potential and clinical implications of CDCA8 across diverse cancers. METHODS: Bioinformatics and molecular experiments. RESULTS: Analyzing TCGA data via TIMER2 and GEPIA2 databases revealed significant up-regulation of CDCA8 in 23 cancer types compared to normal tissues. Prognostically, elevated CDCA8 expression correlated with poorer overall survival in KIRC, LUAD, and SKCM, emphasizing its potential as a prognostic marker. UALCAN analysis demonstrated CDCA8 up-regulation based on clinical variables, such as cancer stage, race, and gender, in these cancers. Epigenetic exploration indicated reduced CDCA8 promoter methylation levels in Kidney Renal Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD), and Skin Cutaneous Melanoma (SKCM) tissues compared to normal controls. Promoter methylation and mutational analyses showcased a hypomethylation and low mutation rate for CDCA8 in these cancers. Correlation analysis revealed positive associations between CDCA8 expression and infiltrating immune cells, particularly CD8+ and CD4+ T cells. Protein-protein interaction (PPI) network analysis unveiled key interacting proteins, while gene enrichment analysis highlighted their involvement in crucial cellular processes and pathways. Additionally, exploration of CDCA8-associated drugs through DrugBank presented potential therapeutic options for KIRC, LUAD, and SKCM. In vitro validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed elevated CDCA8 expression in LUAD cell lines (A549 and H1299) compared to control cell lines (Beas-2B and NL-20). CONCLUSION: This study provides concise insights into CDCA8's multifaceted role in KIRC, LUAD, and SKCM, covering expression patterns, diagnostic and prognostic relevance, epigenetic regulation, mutational landscape, immune infiltration, and therapeutic implications.

7.
Mol Biol Rep ; 51(1): 299, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345740

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS: The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION: This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.


Subject(s)
Adenine/analogs & derivatives , Colonic Neoplasms , RNA , Humans , RNA/metabolism , Transcriptome/genetics , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism , Colonic Neoplasms/genetics
8.
Biomed Pharmacother ; 172: 116274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364738

ABSTRACT

PURPOSE: Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS: Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS: DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-ß1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION: The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metal Nanoparticles , Zinc Oxide , Animals , Rats , Zinc , Zinc Oxide/pharmacology , Caspase 3 , NF-kappa B , Gallic Acid/pharmacology , Carcinoma, Hepatocellular/drug therapy , Signal Transduction , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy
9.
Biol Trace Elem Res ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087036

ABSTRACT

Fluoride and aluminum are ubiquitous toxic metals with adverse reproductive effects. The citrus flavonoid hesperidin has protective activities but poor solubility and bioavailability. Nanoparticulate delivery systems can improve flavonoid effectiveness. We conducted this study to prepare a pH-responsive chitosan-based nanogel for hesperidin delivery and evaluate its effectiveness against sodium fluoride (NaF) and aluminum chloride (AlCl3) induced testicular toxicity in mice. The nanogel was synthesized using 2 kGy gamma irradiation, enabling a size under 200 nm and enhanced hesperidin release at pH 6 matching testicular acidity. Male mice received 200 mg/kg AlCl3 and 10 mg/kg NaF daily for 30 days. Hesperidin nanogel at 20 mg/kg was administered orally either prophylactically (pretreatment) or after intoxication (posttreatment). The results showed that AlCl3 + NaF induced severe oxidative stress, hormonal disturbance, apoptosis, and endoplasmic reticulum stress, evidenced by significant changes in the studied parameters and testicular histological damage. Hesperidin nanogel administration significantly inhibited oxidative stress markers, restored luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels, and alleviated tissue damage compared to the intoxicated group. It also downregulated the expression level of pro-apoptotic genes Bax, caspase-3, caspase-9, and P38MAPK, while upregulating the expression level of the anti-apoptotic BCL2 gene. Endoplasmic reticulum stress sensors PERK, ATF6, and IRE-α were also downregulated by the nanogel. The chitosan-based nanogel enhanced the delivery and efficacy of poorly bioavailable hesperidin, exhibiting remarkable protective effects against AlCl3 and NaF reproductive toxicity. This innovative nanosystem represents a promising approach to harnessing bioactive phytochemicals with delivery challenges, enabling protective effects against chemical-induced testicular damage.

10.
Pharmaceuticals (Basel) ; 16(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37242485

ABSTRACT

Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.

11.
Biol Trace Elem Res ; 201(1): 306-323, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35237941

ABSTRACT

This study investigates the antidiabetic and antioxidant potential of chitosan-encapsulated selenium nanoparticles in streptozotocin-induced diabetic model. Glibenclamide was used as a reference antidiabetic drug. Forty-eight adult male Wistar rats were used along the study and divided equally into 6 groups of (I) normal control, (II) chitosan-encapsulated selenium nanoparticles (CTS-SeNPs), (III) glibenclamide, (IV) streptozotocin (STZ), (V) STZ + CTS-SeNPs, and (VI) STZ + Glib. The animals were sacrificed on the 35th day of the experiment. Serum glucose, insulin, IGF-1, ALT, AST, CK-MB, oxidative stress, lipid profile, and inflammatory parameters were subsequently assessed. Also, the expression level of TCF7L2, CAPN10, and PPAR-γ genes were evaluated using qPCR. In addition, histopathological studies on pancreatic tissue were carried out. The results revealed that STZ induced both diabetes and oxidative stress in normal rats, manifested by the significant changes in the studied parameters and in the physical structure of pancreatic tissue. Oral administration of CTS-SeNPs or Glib results in a significant amelioration of the levels of serum fasting blood glucose, insulin, IGF-1, AST, ATL, and CK-MB as compared with STZ-induced diabetic rats. CTS-SeNPs and Glib diminished the level of lipid peroxidation, increased total antioxidant capacity level, as well as possessed strong inhibition against serum α-amylase and α-glucosidase activities. Diabetic animals received CTS-SeNPs, or Glib demonstrated a significant (p < 0.05) decrease in the expression level of TCF7L2 and CAPN10 genes with a significant increase in the expression level of PPAR-γ gene, compared to STZ group. The above findings clarify the promising antidiabetic and antioxidant effect of CTS-SeNPs, recommending its inclusion in the currently used protocols for the treatment of diabetes and in the prevention of its related complications.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Selenium , Rats , Male , Animals , Antioxidants , Chitosan/pharmacology , PPAR gamma/genetics , PPAR gamma/metabolism , Insulin-Like Growth Factor I/metabolism , Glyburide/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Streptozocin , Rats, Wistar , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Oxidative Stress , Blood Glucose/metabolism
12.
Oncol Res ; 30(6): 269-276, 2022.
Article in English | MEDLINE | ID: mdl-37303494

ABSTRACT

Background: MicroRNAs (miRs) are small (19-25 nucleotides), non-protein coding RNAs that regulate gene expression, and thus play essential roles in cell cycle progression. The evidence has demonstrated that the expression of several miRs is dysregulated in human cancer. Methods: The study includes 179 female patients and 58 healthy women Patients were identified as luminal A, B, Her-2/neu, and basal-like, as well as classified into I, II, and III stages. Analysis of the expression fold change of miR-21 and miR-34a with molecular markers, including the oncogene Bcl-2 (B-cell lymphoma 2) and the tumor suppressor genes BRCA1 (breast cancer susceptibility gene 1), BRCA2 (breast cancer susceptibility gene 2), and the tumor suppressor protein p53, was carried out for all patients, pre- and post-chemotherapy, and for all healthy women. Results: At diagnosis (pre-chemotherapy), miR-21 was up-regulated (p < 0.001), while miR-34a was down-regulated (p < 0.001). Post-chemotherapy, the expression of miR-21 decreased significantly (p < 0.001), while the expression of miR-34a increased significantly (p < 0.001). Conclusion: miR-21 and miR-34a may be helpful to non-invasive biomarkers to evaluate the response of breast cancer to chemotherapy.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , MicroRNAs/genetics , Breast Neoplasms/genetics , Egypt , Oncogenes , Biomarkers
13.
Sci Rep ; 11(1): 16575, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400737

ABSTRACT

Carbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1ß, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Carbon Tetrachloride Poisoning/drug therapy , NF-kappa B/antagonists & inhibitors , Phytotherapy , Polyphenols/therapeutic use , Reactive Oxygen Species/antagonists & inhibitors , Vitis/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Brain/drug effects , Brain/metabolism , Carbon Tetrachloride Poisoning/metabolism , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Fruit/chemistry , Inhibitory Concentration 50 , Kidney/drug effects , Kidney/metabolism , Lung/drug effects , Lung/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Rats , Signal Transduction/drug effects , Spleen/drug effects , Spleen/metabolism , Thiobarbituric Acid Reactive Substances/analysis
14.
J Biol Res (Thessalon) ; 24: 5, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28265554

ABSTRACT

BACKGROUND: Gamma (γ) ray, an electromagnetic radiation, is occasionally accompanying the emission of an alpha or beta particle. Exposure to such radiation can cause cellular changes such as mutations, chromosome aberration and cellular damage which depend upon the total amount of energy, duration of exposure and the dose. Ionizing radiation can impair spermatogenesis and can cause mutations in germ cells. In general, type B spermatogonia are sensitive to this type of radiation. The current study was carried out to evaluate the protective role of hesperidin (H), as a polyphenolic compound, on rat testis injury induced by γ-radiation. METHODS: Rats were divided into groups including C group (control rats), R (irradiated) group (rats irradiated with γ-radiation), Vehicle (V) group (rats administered with dimethylsulfoxide "DMSO"), H group (rats administered with H only), HR and RH groups (rats treated with H before and after exposure to γ-radiation, respectively). Malondialdehyde (MDA: the end product of lipid peroxidation "LPO") and xanthine oxidase (XO: it generates reactive oxygen species "ROS") in testes homogenate as well as nitric oxide (NO: as ROS) in mitochondrial matrix were determined. The apoptotic markers including DNA-fragmentation (DNAF) in testes homogenate and calcium ions (Ca2+) in mitochondrial matrix were determined. Superoxide dismutase (SOD) and catalase (CAT) activities in testes homogenate, while reduced glutathione "GSH" in nuclear matrix were determined. Also histopathological examination for testes tissues through electron microscope was studied. RESULTS: Exposure of rats to γ-radiation (R group) increased the levels of MDA, NO, DNAF, Ca2+ and XO activity, while it decreased GSH level, SOD and CAT activities as compared to the C groups; γ-radiation increased oxidative stress (OS), LPO, apoptosis and induced testes injuries. These results are in agreement with the histopathological examination. In contrast, treatment with H before or after exposure to γ-radiation (HR and RH groups, respectively) decreased the levels of MDA, NO, DNAF and Ca2+ but increased GSH level and the activities of SOD, CAT and XO as compared to R group and this indicates that H decreased OS, LPO and apoptosis. Also, the histopathological results showed that H improved testis architecture and this is related to the antioxidant and anti-apoptotic activities of H contents. Protection is more effective when H is given before rather than after exposure. Finally, administration of H to healthy rats for a short period had no adverse affect on testes cells. CONCLUSION: Hesperidin showed antioxidant and anti-apoptotic activities. It has a protective role against OS, injury and apoptosis induced by γ-radiation in testes. Protection is more effective when H is given before rather than after exposure.Graphical Abstract.

SELECTION OF CITATIONS
SEARCH DETAIL
...